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1 Introduction

Standardization is a crucial and pervasive feature of industrialized societies. Entire

industries coordinate the introduction and adoption of new technologies through the

development of technology standards. However, the literature has so far overlooked

the important role of standardization for technology adoption and macroeconomic

variables.1

In this paper, we exploit the fact that standardization is at the heart of the

adoption of Information and Communication Technologies (ICT) for the identification

of economy-wide technology shocks. We quantify the impact of standardization on

the business cycle and demonstrate its importance for macroeconomic dynamics.

Standards shape many objects of our daily life. Prominent examples of standards

include electricity plug standards, paper size formats or quality standards (e.g. ISO

9001:2008). Standardization is particularly crucial for the adoption of ICT. Many ICT

are subject to strict compatibility requirements : different technological applications

have to be based on common standards in order to benefit from the network effects

that are generated by the wide-spread use of interoperable technologies (Katz and

Shapiro, 1985).

Standardization is thus a prerequisite for the implementation of ICT technologies.

The development of the Internet was made possible by the definition of Internet

protocols and other universal communication standards. Technological progress in

wireless telecommunication proceeded through the development of various generations

of standard families (1G, 2G, 3G, 4G and now 5G telecommunication standards).

These technologies affect the production processes of a large number of sectors

and have therefore been labeled a General Purpose Technology (GPT).2 Due to

their economy-wide use, the underlying standardization process in ICT generates

technology shocks that can be expected to have aggregate macroeconomic effects.

1To our knowledge, there is only one other paper that treats the concept of “standardization” in a
macroeconomic setting, but it differs conceptually from our use of the term “standardization”. In
Acemoglu et al. (2012), standardization is the process through which the tasks associated with
a new technology become more widely and routinely practiced. Therefore, standardization is
modeled as the process of turning an existing high-tech product into a low-tech one. In contrast,
the concept of standardization in this paper specifically refers to technology standards developed by
standard-setting organizations (SSOs) to ensure the interoperability of devices and/or technologies.

2Earlier examples of GPTs are the steam engine, railroads or electricity. Gross (2019) shows that
the standardization of railroad gauges in 1886 in the South of the US resulted in a sharp increase
in railroad shipments: the increase of 50% was in large part a substitution away from steamship
traffic.
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Our findings can be summarized as follows. We find that standardization is an

important driver for output and investment as well as for long-run productivity. The

technology shock that we identify is very specific, but can nevertheless account for

up to 8% of business cycle fluctuations and 29% of fluctuations at lower frequencies.

Following a technology shock, investment in information processing equipment and

software picks up across all sectors and does so to a larger degree than other types

of investment. In the short run, standardization produces important transitory

dynamics. The reaction of output and investment to our technology shock is S-

shaped, thus implying slow diffusion. Moreover, we find that TFP decreases in the

short-run. We interpret this finding as an indication of the incompatibility of the

new standard with the incumbent technology. When we use information on whether

a standard is genuinely new or just an upgrade of an already existing standard

(discontinuous vs. continuous technological change), we confirm that the temporary

slump in TFP arises from discontinuous technological change.

We also find that the identified technology shocks communicate information

to economic agents about future productivity in the spirit of Beaudry and Portier

(2006): Stock market indices rise on impact to the identified technology shock. We

confirm this finding both in a VAR framework with quarterly data as well as using

daily stock market data around specific standardization events.

We make several contributions to the literature. First, we propose the use of

standards as an important but overlooked indicator of technological change. While

the literature has sometimes used patent counts to study the role of technological

innovation for macroeconomic fluctuations, standard counts are a more compelling

indicator of technology adoption. Standards – similar to patents – are clearly

identified documents which describe detailed features of a technology. While many

patented inventions are never or only rarely used, standards reflect the consensus of

entire industries to adopt a technology. We make the standard series available in the

online appendix and also provide the underlying code to extract standard counts for

different technological fields to encourage other researchers to use these data.

Second, standardization is not only a direct indicator of technology adoption,

but also explains fluctuations in the rate of technological progress and technology

adoption. In the literature on the role of technology shocks in the business cycle,

these shocks are often exogenously given and could be attributed to a variety of

different causal mechanisms. By contrast, this paper aims to shed light on how the

necessity to standardize leads to the industry-wide adoption of bundles of technologies

and thus generates fluctuations in the rate of technological change.
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Third, this paper also contributes to the literature by introducing a flexible,

data-driven way to tackle non-fundamentalness (Lippi and Reichlin, 1993; Leeper

et al., 2013). Technology is endogenous to the economic cycle. To take into account

these interactions, we use a vector autoregression (VAR) model for the empirical

analysis. However, recovering structural shocks in the context of slow technology

diffusion can prove difficult. We specifically adapt our VAR model to the context of

slow technology diffusion by opting for a generous lag length and variable-specific

shrinkage to capture the importance of distant technology lags for the dynamics of

the system. We introduce this feature into macroeconometric modeling by using

Bayesian techniques.

Finally, this paper also contributes to the recent literature on news shocks

(Beaudry and Portier, 2006; Jaimovich and Rebelo, 2009) by proposing an explicit

example of a mechanism which reveals information about future macroeconomic

developments and generates an immediate reaction of forward-looking variables.

Related literature. This paper is related to the literature on the effects of tech-

nology shocks on business cycles. Most of the empirical research in this field deduce

technology shocks from macroeconomic data (King et al., 1991; Gaĺı, 1999; Basu

et al., 2006; Fernald, 2012). These approaches are highly dependent on their underly-

ing identification assumptions. As an alternative approach, one can employ direct

measures of technological change. On one hand, several studies rely on R&D and

patent data to capture direct indicators of inventive activity (Shea, 1999; Kogan

et al., 2017; Akcigit and Kerr, 2018). Recently, this approach has been extended to

identify technological news shocks (Miranda-Agrippino et al., 2019; Cascaldi-Garcia

and Vukotic, 2019). However, R&D expenditures and patent counts often tell little

about the economic significance of an innovation and are only loosely related to the

actual implementation of new technologies.

Therefore, on the other hand, proxies for the adoption of technological innovations

have been used. Alexopoulos (2011) relies on technology publications, i.e. manuals

and user guides, as a measure for technology adoption. She finds that the reaction of

TFP to technology shocks is positive and economically important; however, there

is no short-term contraction as in our case. Standardization occurs prior to the

actual use of new technologies, which is picked up by the indicator in Alexopoulos

(2011). While the publication of technology manuals is a symptom of technology

implementation, we propose to analyze standardization as a mechanism that causes

coordinated implementation and contributes to explain fluctuations in the rates of

technological progress and technology adoption.
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This paper also relates to the literature on shocks to the efficiency of new

investment goods as defined by Greenwood et al. (1988). These investment-specific

technology (IST) shocks have been shown to play an important role for macroeconomic

dynamics (Greenwood et al., 2000; Fisher, 2006; Justiniano et al., 2010). However,

compared to IST shocks, standardization takes place before the actual increase in

the efficiency of new investment goods.

The vintage capital literature, in particular, has concentrated on the role of

new technological vintages for macroeconomic dynamics (see for example Cooley

et al., 1997). This literature shows that productivity can slow down temporarily

if the new technology requires learning and reorganization (Hornstein and Krusell,

1996; Greenwood and Yorukoglu, 1997; Yorukoglu, 1998). We argue that, following

standardization, new products and processes are brought to the market during a

lengthy implementation process (“time to implement”, see Hairault et al., 1997).

Our results show that stock markets nevertheless react positively on impact

to the identified technology shock. We relate this finding to the high information

content of standardization events. The fact that forward-looking variables react

contemporaneously resembles the dynamics uncovered in the news shock literature

(Beaudry and Portier, 2006; Jaimovich and Rebelo, 2009; Barsky and Sims, 2011).

Related to this literature, several papers use direct measures of technology to identify

news shocks in VAR settings (Miranda-Agrippino et al., 2019; Cascaldi-Garcia and

Vukotic, 2019); Kurmann and Sims (2017) use our standardization indicator and

show that it conveys news to economic agents.

The next section motivates and discusses the relevance of standardization using

the example of mobile telecommunications. Section 3 and 4 describe the data and the

econometric methodology. Section 5 discusses the results while section 6 investigates

the robustness of the findings. Finally, Section 7 concludes.

2 The role of standardization in technological innovation

2.1 Background: The standard-setting process

ICT is a General Purpose Technology (GPT, see Basu and Fernald, 2008; Jovanovic

and Rousseau, 2005) and has constituted the dominant source of technological

progress in many sectors of the economy in recent decades. Technological innovation

in ICT is characterized by the requirement to achieve interoperability between

different devices and between different technological inventions. This interoperability

is achieved through standardization.
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The prominent role of standardization for innovation in ICT has far-reaching

implications for the macroeconomic analysis of technological change. In particu-

lar, standardization can explain why technological innovation may cause aggregate

macroeconomic fluctuations. First, through standardization, many complementary

inventions are developed together and are made simultaneously available. This

translates into discrete discontinuous technological jumps. Second, entire industries

coordinate on the adoption of these new technologies. This coordinated and simul-

taneous deployment of bundles of technologies represents a major macroeconomic

event.

On one hand, through standardization, groups of firms or entire industries coor-

dinate their efforts towards the development of a technology to be commonly used

(Lerner and Tirole, 2015; Spulber, 2018). There are several ways to achieve this coor-

dination, notably through voluntary participation in Standard-Setting Organizations

(SSOs), as well as de facto standardization. Many important ICT standards are set

by SSOs. Relevant examples of SSOs developing ICT standards are the Institute

of Electrical and Electronics Engineers (IEEE) or the 3rd Generation Partnership

Project (3GPP), a consortium of seven SSOs that cooperate in the development of

technical specifications.3

Most SSOs are private organizations that develop technology standards through

the voluntary contributions of their members. SSO membership is typically open to all

interested stakeholders, and many SSOs have a broad membership base, including all

relevant stakeholders from a particular industry.4 Within SSOs, technical committees

and working groups of industry representatives develop draft standards. Many SSO

standards thus draw on the combined technical contributions of all of the most

relevant firms in a particular industry.

On the other hand, technology standards coordinate the industry-wide adoption

of new technologies. The application of technology standards developed by SSOs is

voluntary, unless a standard is incorporated into binding government regulation.5

However, using a standard is often necessary for companies in order to participate in

a particular industry.6 Furthermore, SSOs typically make decisions on the adoption

3See Baron and Gupta (2018) for a detailed analysis of the standardization process in 3GPP, and a
description of the data on 3GPP specifications used in this section.

4In a sample of 200 SSOs operating in ICT, Baron and Spulber (2018) find that the median SSO
has more than 100 member companies.

5SSOs can develop regulatory standards upon request of governmental authorities. Alternatively,
voluntary SSO standards can be incorporated by reference into binding regulations.

6For example, the International Telecommunications Union (ITU-T) states: “Recommendations
are standards that define how telecommunication networks operate and interwork. ITU-T Rec-
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of a new standard by consensus. An SSO standard thus represents a wide agreement

among a significant group of industry members on the most appropriate technological

solution for a specific need.

2.2 An illustrative example

We will illustrate these implications using the example of mobile telecommunication

technologies, and the role of the standards developed by 3GPP. Mobile telecommu-

nication technology is one of the most visible and significant areas of technological

progress over the last 25 years. Standardization in this industry enabled important

technological advances: the average connection speed of new mobile telecommunica-

tion devices has dramatically increased, enabling the large number of applications

for which contemporary smart phones are used. This process features several waves

of significant technological improvements embodied in the different generations of

mobile telecommunications standards.

Discontinuous technological progress through standardization. Figure 1

plots the evolution of the average connection speed of new phone devices introduced

between 2003 and 2015, depicting a more than 600-fold increase. The average

connection speed of new devices increases by an average of 90% per year over 2005–

15. Most of this increase can be attributed to the introduction of new generations of

mobile telecommunication technology. Second Generation (2G) technology such as

GSM was first supplanted by Third Generation (3G) technologies such as UMTS and

HSPA (green line in figure 1), and later by the Fourth Generation (4G) technology

LTE (red line in figure 1), with each new generation marking a discrete technological

jump.

3G, 4G, or 5G refer to a generation of inter-related standard specifications

rather than a single technology. Each generation of phone standards incorporates

thousands of interdependent inventions, reflected in the many thousand patents

declared to be essential to these technology standards: close to 10,000 patents were

declared to be essential to the 2G technology GSM, while 40,000 and over 45,000

patents, respectively, were declared essential for UMTS (3G) and LTE (4G) standards

ommendations are non-binding, however they are generally complied with due to their high
quality and because they guarantee the interconnectivity of networks and enable telecommuni-
cation services to be provided on a worldwide scale.” Cited from http://www.itu.int/en/ITU-
T/publications/Pages/default.aspx
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Figure 1: Exponential increase in connection speed of new phones

Notes: The figure plots the average download speed of different communication
standards, by year of phone release. The figure is based on data on connection
speeds of 4,026 different devices, introduced from 2003 to 2015. A single phone
may be able to communicate using different communication technologies. The blue,
green and red lines respectively plot the average download speed of mobile phones
when using 2G, 3G and 4G technology. The dotted line represents the average
download speed of each phone’s fastest telecommunication technology. This average
speed increases because of the technological improvements within each generation,
and because of the increasing share of phones able to communicate using the most
recent generation. We collected the data from GSM Arena, www.gsmarena.com.

(Baron and Pohlmann, 2018).7 The standardization process thus aggregates large

numbers of individual inventions into a complex technological system. Individual

technical specifications may already aggregate large numbers of individual technical

contributions 8. Furthermore, hundreds of such standard specifications are bundled

together in one “generation” to describe complex technological systems such as GSM

or LTE. With the release of a standard generation, many thousand inventions are

thus simultaneously made available for implementation. Technology shocks rather

than smooth technological progress result from this process.

765 different companies declared to own 45,279 patents related to 11,604 different inventions that
they believed to be essential to the LTE technology standard, 63 companies declared that they
owned a total of 39,748 essential patents for the UMTS standard (relating to 9,390 different
inventions), and 54 different companies declared to own a total of 9,868 essential patents (2,236
different inventions) for the GSM standard (Baron and Pohlmann, 2018).

8The technical specification TS 24.229 for example is a standard specification developed through
more than 11,000 different written contributions from different 3GPP members (Baron, 2018;
Baron and Gupta, 2018).
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Industry-wide technology adoption through standardization. In addition

to coordinating inventions and causing a discontinuous pattern of technological

progress, standardization constitutes an explicit mechanism for technology selection

and coordination on technology adoption.9 By resolving technological uncertainty,

standardization triggers the industry-wide implementation of new technologies.10

Figure 2: Standardization and diffusion of successive standard generations

Notes: The first panel plots the overall number of technical specifications (TS) released by 3GPP (and its
predecessor organization GSM, whose activities were eventually merged into 3GPP). The second panel plots the
technical specifications (TS) that can be attributed to each of the three generations of mobile telecommunications
standards: blue (2G), green (3G) and red (4G). The third panel plots the number of phone models which
incorporate the respective 2G, 3G and 4G technology. Data source: 3GPP and GSM Arena.

Using the mobile telecommunications technologies 2G, 3G and 4G as an example,

figure 2 provides an example of the temporal coincidence between standard releases

and the first stage of the mass introduction of new technologies. The two left-hand

graphs in figure 2 depict the evolution of the count of new standard documents, called

technical specifications (TS) in 3GPP.11 The first graph displays the overall count,

highlighting that there were several spikes over time. The second graph focuses only

on those TS releases that can most immediately be attributed to one of the three

generations: one can see three different “waves” of releases corresponding to the three

9Lerner and Tirole (2015) and Spulber (2018) analyze the standard setting process as a coordinated
selection mechanism. In line with this theoretical analysis, Rysman and Simcoe (2008) empirically
find that SSOs are generally efficient at selecting superior technologies.

10Aggarwal et al. (2011) analyze the role of standardization for reducing uncertainty inherent to
technology development.

113GPP develops technical specifications that are then transposed into standards by the regional
member SSOs of 3GPP.
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different generations. Each spike in the total series corresponds to one of the three

waves that define a standard generation.

The right-hand graph in figure 2 tracks the implementation of the different

generations of 3GPP standards in a sample of 7,658 telecommunication devices by

plotting the number of phone models that incorporate the respective 2G, 3G or 4G

technology.12 We can see a succession of three diffusion curves, where each new

communication technology is initially only implemented in a limited number of new

devices, before implementation becomes more generalized. The three spikes in the

number of standards releases correspond quite closely to the respective start of these

three different diffusion processes.

Standardization is thus associated with the point in time when a new technology

becomes available for implementation. This implementation begins with the release

of the standard; the technology then gradually diffuses to a larger number of devices.

There is thus a significant ‘time to implement” (Hairault et al., 1997), as firms need to

develop new standard-compliant products or services or to adapt existing production

structures to discontinuous technological change.

2.3 Aggregate standard counts and macroeconomic implications

Individual technologies and the lumpiness of aggregate standard counts.

We have shown how standardization causes individual technologies such as mobile

telecommunications to progress through a succession of discrete leaps. Next, we will

show that such leaps in individual technological fields are sufficiently significant to

cause spikes in aggregate ICT standardization activity. We therefore now turn to all

technologies categorized as ICT and investigate the properties of aggregate standard

counts.

We use data from the Searle Center database on technology standards and

standard setting organizations (Baron and Spulber, 2018) and construct time series

by counting the number of standards which are released per quarter.13 The Inter-

national Classification of Standards (ICS) system allows assigning each standard

to a specific technological field. We restrict the analysis to standards released in

the ICS categories 33 (Telecommunications. Audio and video engineering.) and

12As in figure 1, the sample is drawn from the website GSM Arena (www.gsmarena.com). The
sample for this analysis is larger and the observation period is longer because information on the
phone’s telecommunication technologies is more often available than information on connection
speeds.

13See section 3 for further information. More information on the construction of the data can also
be found in appendix G.
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35 (Information technology.), as well as standards set by SSOs with an exclusive

technological focus on individual ICT. The blue line in figure 3 plots the standard

count for ICT standards released by US SSOs. One can observe a constant increase

in the 1980s and 1990s. However, there is also a large amount of variability in the

data and one notes the apparent lumpiness of the aggregate time series count.

Figure 3: Standard series 1975Q1–2011Q4
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Notes: The series display the number of new standard releases per quarter (“standard count”).
The left-hand side y-axis corresponds to ICT standards and the right-hand side y-axis cor-
responds to the total number of standards across all ICS classes which were released by US
standard setting organizations over the period 1975Q1–2011Q4. The blue line plots the total
count of ICT standard releases over the period 1975–2011. The overall count is broken down in
those standards that were released in a given quarter in a 5-digit ICS class whose normalized
share of the overall count in that quarter is 20% or more (“distinct shocks”: yellow line) and
the remaining standards (“broad-based shocks”: orange line).

The spiky nature suggests that there are indeed “shocks”, but do these shocks

represent the arrival of distinct technologies (i.e. are these shocks driven by specific

ICS classes) or do we see a co-movement across the subcategories contained in ICS

33 and 35? These subcategories are 5-digit ICS classes such as Integrated Services

Digital Network (ISDN) [33.080], Microprocessor systems [35.160] or Data storage

devices [35.220]. We decompose our aggregate series into two components, which we

respectively label “broad-based” and “distinct” shocks, similar to the decomposition

of aggregate investment in Gourio and Kashyap (2007). The series labelled “distinct

shocks” counts the number of standards that were released in a given quarter in

a 5-digit ICS class whose normalized share of the overall count in that quarter is
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20% or more.14 It thus counts technology shocks that can be traced back to an

idiosyncratic increase in a specific technology (5-digit ICS class). The series labeled

“broad-based shocks” picks up the remaining standards, thus tracking variations that

affect many technologies.

Figure 3 shows that the variation in the aggregate series, and notably its spikes,

are driven to a large extent by distinct, technology-specific variations. This analysis

reveals that idiosyncratic technology shocks in individual technological fields lead to

the spikes that characterizes the aggregate ICT standardization series.

Economy-wide technology adoption. In section 2.2, we highlighted that spikes

in mobile telecommunications standardization coincided with the beginning of the

diffusion of new telecommunication technologies in the product market. We also

established that such idiosyncratic standardization shocks in individual technological

fields translate into spikes in the aggregate ICT standardization series. We will now

analyze whether spikes in aggregate ICT standardization are accompanied by an

industry-wide increase in ICT adoption.

In order to address this question, we carry out an empirical exercise similar to

Rajan and Zingales (1998). In particular, we regress investment rates in equipment

per industry (our measure of aggregate adoption activity) on lagged counts of ICT

standard releases, interacted with an indicator of the industry’s dependence on ICT.

If ICT standardization triggers the economy-wide diffusion of new ICT, we would

expect that industries that use ICT to a large extent respond to ICT standardization

with an increased rate of investment.

In particular, we follow Gutiérrez and Philippon (2017) and define the investment

rate as current investment in industry j scaled by last period’s capital stock.15 For our

measure of ICT dependence we rely on the BEA’s input-output tables. Dependence

on ICT inputs is defined as the share of a sector’s inputs from the following sectors

in overall inputs: (1) Computer and electronic products [NAICS 334], (2) Publishing

industries, except internet (includes software) [NAICS 511], (3) Broadcasting and

telecommunications [NAICS 513], (4) Data processing, internet publishing, and other

information services [NAICS 514] and (5) Computer systems design and related

14The share is normalized as it is calculated on the basis of a standard count that is weighted by
the inverse of the mean number of standards per 5-digit ICS in order to take into account that
certain ICS classes are by definition larger than others.

15Data are taken from the BEA’s Fixed Assets accounts; the investment rate is the ratio of
investment in private fixed assets over the current-cost net stock of private fixed assets.
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services [NAICS 5415]. In total, we cover 61 industries, which are listed in the

appendix. All data are annual.

All independent variables are included as lags in order to address endogeneity

concerns. As we are interested in dynamic effects we include up to 5 lags (L = 5) of

the variable of interest. In particular, the regression specification takes the form:

Ij,t
Kj,t−1

= αdj,t−L−1 +
L∑
l=1

βl∆st−ldj,t−L−1 + ft + fj + εj,t

where dj,t−L−1 is the average dependence of sector j on ICT inputs in the ten

preceeding years, i.e.

dj,t−L−1 =
1

10

10∑
n=1

depj,t−L−n

∆st−l is the log change in the number of newly released ICT standards in t− l. We

include both industry and time fixed effects.

Results are displayed in table 1. In column (1), results are displayed for total

investment whereas columns (2), (3) and (4) decompose total investment respec-

tively into equipment, intellectual property (which includes software, research and

development (R&D), and entertainment, literary, and artistic originals) as well as

structures.

The results in table 1 show that standardization induces a positive and significant

reaction of investment in equipment. We interpret this increase as evidence for a

pick-up in adoption activity at the aggregate level. As in the case of mobile phones,

the pick-up is not immediate: it takes two years for investment in equipment to react

significantly to a pick-up in standardization and this reaction is lasting for a couple

of years.

Reassuringly, we find that this effect is limited to investment in new equipment.

Investment in structures or intellectual property do not respond significantly to an

ICT standardization shock.16 At the bottom of table 1, we report the F-statistic of the

joint significance of all the coefficients βl; these are jointly significant for equipment

investment only. ICT standardization thus leads to an investment response in a

large number of industries using ICT as an input, but this response is limited to

16We expect that ICT standardization significantly interacts with investment in Intellectual Property
within the industries that develop rather than use ICT.
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Table 1: Regression results: Industry-level investment rates

(1) (2) (3) (4)
Total Equipment IP Structures

Dep. (t-6) -0.00114 -0.00032 -0.00065 0.00001
[0.355] [0.490] [0.465] [0.985]

Dep. (t-6) × Standards (t-1) 0.00028 0.00051* -0.00057 0.00025
[0.702] [0.067] [0.157] [0.214]

Dep. (t-6) × Standards (t-2) 0.00035 0.00078*** -0.00054 0.00033
[0.588] [0.000] [0.261] [0.122]

Dep. (t-6) × Standards (t-3) 0.00060 0.00082*** -0.00075 0.00030
[0.195] [0.001] [0.141] [0.259]

Dep. (t-6) × Standards (t-4) 0.00013 0.00065*** -0.00091* -0.00001
[0.740] [0.005] [0.068] [0.973]

Dep. (t-6) × Standards (t-5) -0.00026 0.00040** -0.00081* -0.00002
[0.611] [0.027] [0.089] [0.921]

F-stat 0.001 0.003*** -0.004 0.001
[0.661] [0.001] [0.121] [0.466]

Observations 1631 1631 1631 1631
R2 0.81 0.81 0.89 0.67
Adjusted R2 0.80 0.80 0.89 0.65

j-FE Yes Yes Yes Yes
t-FE Yes Yes Yes Yes

Notes: The table presents the regressions results for a regression of investment rates on the ICT dependency ratio
(calculated in t− 6) and its interaction with lagged ICT standard counts. P-values are displayed in brackets. The
F-statistic tests for the joint significance of all the interaction terms.

investment in new equipment (which presumably includes the vast majority of ICT

implementations).

2.4 Take-away

Our analysis of standardization contrasts with assumptions on technology adoption

commonly used in macroeconomic models. These models usually assume that

innovative activity is decentralized, with technological progress arriving stochastically.

Such notions are inherent to the business cycle literature, as for example in Kydland

and Prescott (1982) or Rotemberg (2003), but can also be found in macroeconomic

models of innovation (Klette and Kortum, 2004; Acemoglu et al., 2018). With

regards to technology adoption, the macroeconomic literature usually considers this

to be a firm-level decision, uncoupled from other firms’ decisions (Jovanovic and

MacDonald, 1994; Benhabib et al., 2017).17 By contrast, we have highlighted the

importance of industry-wide coordination in both the development and the adoption

17Nevertheless, aggregate determinants such as knowledge spillovers and competitive pressure do
matter, but direct coordination among firms is often excluded.
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of new technologies. These coordination processes lead to discontinuous technological

improvements, and clustered industry-wide adoption of complex bundles of inventions.

In the following econometric analysis, we will investigate the macroeconomic

effects of this pattern of technology adoption. The schematic representation in figure

4 situates our analysis with respect to other studies of the role of technology for

macroeconomic fluctuations. We argue that standardization is a crucial mechanism

linking the invention of new technologies (as indicated e.g. by patenting) and their

actual use and commercialization (as indicated e.g. by manuals and other indirect

symptoms of technology adoption).

Figure 4: Stylized sequence of technological innovation and indicators
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3 Description of the data

We employ data for the US economy. In order to retrieve time series on standard-

ization, we use the Searle Center database on technology standards and standard

setting organizations (Baron and Spulber, 2018).18 This database includes standards

set by more than 600 SSOs; including formal SSOs and more informal standards

consortia (Chiao et al., 2007). Our data do not cover de facto standards or the

standards issued by ad hoc industry groups. An example of a de facto standard is

the QWERTY keyboard. If a de facto standard or a standard developed by an ad

hoc group gains wide acceptance, it is common that such standards are eventually

18The Searle Center database of technology standards and standard setting organiza-
tions is a database with comprehensive information on standards intended for aca-
demic research; for additional information, see http://www.law.northwestern.edu/research-
faculty/searlecenter/innovationeconomics/data/technologystandards/index.html.

14

http://www.law.northwestern.edu/research-faculty/searlecenter/innovationeconomics/data/technologystandards/index.html
http://www.law.northwestern.edu/research-faculty/searlecenter/innovationeconomics/data/technologystandards/index.html


accredited as a standard by one of the formal SSOs in our sample.19 Even though

there are hundreds of SSOs and consortia, a few large organizations dominate the

standard setting process. According to the American National Standards Institute

(ANSI), the 20 largest SSOs produce about 90% of all US standards.20

For many standards issued by large SSOs, the ICS classification allows assign-

ing each standard to a specific technological field. In the case of smaller SSOs,

the technological classification of the standard can generally be inferred from the

technological focus of the issuing SSO. Table 2 shows that the database we are ex-

tracting for the period 1975Q1–2011Q4 contains a total of almost 640 000 standards

of which roughly 16% are ICT standards. Other technological fields in which a large

amount of standards are released are engineering and electronics as well as materials,

transport and distribution of goods. More than 150, 000 standards are categorized

as special technologies due to the fact that the Searle Center Database comprises

“Military and Government Specs & Standards” from the Naval Publications and Form

Center (NPFC) which we characterize as belonging to the ICS class 95 (Military

engineering.).

Table 2: Characteristics by ICS classification 1975Q1–2011Q4

Number % new

US US+Int US US+Int

Agriculture and food technologies 3392 12254 59 62
Construction 14052 27568 40 44
Engineering/electronics 38151 87712 49 53
Generalities, infrastructures and sciences 14265 25902 61 59
Health/safety/environment/agriculture/food 13610 32596 49 50
ICT 17737 103954 74 65
Materials technologies 40398 65013 38 42
Special technologies 159275 166315 39 40
Transport and distribution of goods 55856 78563 64 63
Not classified 34458 39611 60 65
Total 391194 639488 48 52

Notes: The table summarizes information on the data series over the time period 1975Q1–2011Q4. “US” refers
to standards released by US standard setting organizations whereas “US+Int” refers to standards released both
by US and international standard setting organizations. “% new” refers to the percentage of standards in
the sample which are new, i.e. which are not upgrades of already existing standards. The number of total
standards in the table does not equal the sum of the underlying ICS classes as standards can be categorized
into more than one ICS class.

19This has for instance been the case of the DVD format, which was first specified by an informal,
ad-hoc industry group and was eventually released as an ISO standard.

20See the Domestic Programs Overview on ANSI’s website:
http://www.ansi.org/standards activities/domestic programs/overview.aspx?menuid=3
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Figure 5: Underlying technological fields in ICT standardization
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Notes: All standards categorized in the ICS 2-digit classes 33 and 35 are broken down by ICS
5-digit categorization, in particular: 33.040 – Telecommunication systems, 33.060 – Radiocom-
munications, 33.070 – Mobile services, 35.040 – Information coding, and 35.240 – Applications
of information technology. The category “Other” captures all remaining ICT standard classes.
A standard can be classified into several ICS 5-digit classes which is why the above chart does
not match the overall count in figure 3.

In most of the paper, we exclusively focus on ICT standards. While our database

contains standards beyond the field of ICT (and electronics, which we include in a

robustness analysis in section 6, we purposely limit our analysis to ICT. For one, the

necessity to standardize is particularly pronounced in ICT as network externalities

can only be realized when technologies are interoperable (Katz and Shapiro, 1985).

Second, ICT are general purpose technologies (Basu and Fernald, 2008; Jovanovic

and Rousseau, 2005) and can therefore be expected to have aggregate macroeconomic

effects. ICT include a variety of distinct technological fields. Figure 3 decomposes

our overall count from figure 5 into the underlying 5-digit ICS classes. The five most

frequently appearing ICS classes are 33.040 (Telecommunication systems), 33.060

(Radiocommunications), 33.070 (Mobile services), 35.040 (Information coding) and

35.240 – Applications of information technology.

In addition, we are able to identify the national focus of the different SSOs. For

the main analysis in this paper, we will use standards released by US-based SSOs, as

these are the most relevant for the US economy. In the robustness section, we will

show that our results hold when also including international SSOs whose standards

also apply to the US (“US+Int”).
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In section 5.2, we distinguish between the effects of new and upgraded standards.

We define a standard as new if it is the first standard in a version history; whereas the

publication of a new version of an already existing standard constitutes an upgrade

(Baron et al., 2016). In section 6, we will also use certain standard characteristics

(the number of pages or references) to assess the relevance of different standard

documents. We obtain information on pages, references, and version histories from

the Searle Center Database.

For a share of the standard counts, we only have information about the year, but

not the month, of the release of the standard. We therefore adjust the final series by

uniformly distributing the standards for which only the release year is known across

the quarters in the respective year. This adjustment does not affect our results.21

In section 6.4, we will present robustness checks using annual data to show that

results hold independently of the adjustment procedure. For details on the standards

data, we refer to appendix G. We make the standard series available on the authors’

websites where we also provide additional explanations and codes to extract standard

counts.

Concerning macroeconomic variables, we will focus on the following series in the

baseline version of the empirical model: output in the business sector, private fixed

investment as well as total factor productivity (adjusted for capacity utilization)

which is taken from John Fernald’s website22. Data on macroeconomic aggregates

are real, seasonally adjusted and transformed in per capita terms by dividing the

series with the population aged 16 and above. All data are quarterly for the period

1975Q1–2011Q4. Detailed information on all the series, and in particular their

sources, can be found in appendix F. For the estimations, all data series are in log

levels.

4 Econometric strategy

We employ a vector autoregression (VAR) model in order to take into account that

technology adoption could be partly endogenous to the cycle. The reduced-form

21In particular, we experimented with different adjustment procedures, i.e. using the distribution of
standards with known complete date over one year (instead of a uniform distribution) to allocate
the standards with incomplete date released in the same year, or using only the series for which
the complete date is known. Results did not change.

22See Fernald (2012) and http://www.johnfernald.net/TFP.
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VAR system can be written as follows:

Yt = XtA+ ut where E[utu
′
t] = Σ ; vec(ut) ∼ N (0,Σ⊗ IT−p)

Xt comprises the lagged variables of the VAR system and A denotes the coefficient

matrix. In the baseline version, Yt is composed of output in the business sector,

private fixed investment, total factor productivity (adjusted for capacity utilization)

as well as the standard count of ICT standards released by US SSOs.

Non-fundamentalness can arise in VARs with news shocks or slow technology

diffusion: recovering structural shocks can be difficult if the space spanned by the

shocks is larger than the space spanned by the data (Lippi and Reichlin, 1993; Leeper

et al., 2013). Appendix D provides a detailed discussion of this issue.

One solution to the non-fundamentalness problem is to align the information set

of the econometrician with the one of the agents. This is the approach taken in this

paper: by including our standardization indicator into the VAR, we pick up the point

in time when technology adoption is announced. However, we are also confronted

with the fact that it takes time to adjust the newly standardized technologies to their

final use – an issue that could reinstate non-fundamentalness. We therefore include

12 lags into the VAR, instead of the usual 4 lags often employed for quarterly data.23

A generous lag length, however, can cause problems due to overparameterization.

We tackle this trade-off by using Bayesian shrinkage in a flexible, data-driven way. In

particular, we allow for variable-specific lag decay to reduce parameter uncertainty

while still fully exploiting the information contained in longer lags of the standard

series. In order to implement this approach, we use a Normal-Wishart conjugate

prior which assumes the following moments:

Σ ∼ IW(Ψ, d)

α = vec(A) | Σ ∼ N (a,Σ⊗ Ω)

In particular, we impose a Minnesota prior, i.e. the first own lag of variable i is equal

to a certain value δi while all other prior coefficients are zero:

aijl =

{
δi if i = j and l = 1

0 otherwise

23Canova et al. (2010) also include 12 lags in order to avoid problems of non-fundamentalness.
Fève and Jidoud (2012) show that the inclusion of many lags considerably reduces the bias in
VARs with news shocks. A similar point is raised by Sims (2012) who shows that the bias from
non-fundamentalness increases with the anticipation lag of news shocks.
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Macroeconomic variables such as output, investment or TFP are non-stationary due

to the unit root properties of the time series (which are included into the VAR in

log levels). The non-stationarity of the macroeconomic variables is taken care of by

specifying δi accordingly. In particular, the prior coefficients for the macroeconomic

variables mimic their unit root properties (δi = 1) and the one for standardization

assumes a white noise behavior (δi = 0). Thus, we explicitly model the fact that

output, investment and TFP have a unit root, while this is not the case for the

standard series.

The informativeness of the prior is governed by the variance of the prior coef-

ficients. A tighter variance implies that the coefficient of the posterior will more

closely follow the prior coefficient, thus reducing parameter uncertainty (“Bayesian

shrinkage”). The variance of the prior coefficients is set as follows:

V (aijl) =


φ1

lφ4
for i = j, l = 1, . . . , p (own lags)

φ1φ2

lφ4,j
ψi
ψj

for i 6= j, l = 1, . . . , p (lags of other variables)

φ3ψi for the constant

The vector φ = (φ1 φ2 φ3 φ4 ψi) denotes the hyperparameters that govern the

“tightness” of the prior. The prior on the constant is assumed to be uninformative

(φ3 = 106). The Minnesota prior is Normal-Wishart and thus requires a symmetric

treatment of all equations (Kadiyala and Karlsson, 1997; Sims and Zha, 1998), which

is why φ2 = 1.24 The parameter φ1 controls the overall shrinkage of the system.25 ψi

are scale parameters.

The Minnesota prior assumes that longer lags are less relevant, which is why they

are shrunk to zero. This “lag decay” is usually fixed a priori by the econometrician

uniformly across all variables. However, since the purpose of a generous lag length is

to capture slow technology diffusion, we allow for variable-specific shrinkage of distant

lags (via φ4,j) which we estimate from the data. By doing so, we want to avoid to

forcefully shrink the influence of long lags of standards (or any other variable), but

rather “let the data speak” on the amount of lag decay for each variable.

With φ2 and φ3 being fixed, we collect the remaining hyperparameters in the

vector Θ = (φ1 φ4,j ψi). In setting Θ, we follow Canova (2007), Giannone et al.

(2015) and Carriero et al. (2015) and maximize the marginal likelihood of the data,

24For the same reason, the same lag decay for each variable is imposed on all equations.
25When φ1 = 0, the posterior distribution tends towards the prior distribution; when φ1 =∞, the

prior is flat and the posterior estimates coincide with the ordinary least squares estimates.
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p(Y ), with respect to Θ:

Θ∗ = arg max
Θ

ln p(Y ) where p(Y ) =

∫ ∫
p(Y | α,Σ) p(α | Σ) p(Σ) dα dΣ

The maximization of p(Y ) also leads to the maximization of the posterior of the

hyperparameters. The latter are therefore estimated from the data. Appendix B

describes the prior distributions, the posterior simulation and the selection of the

hyperparameters in more detail.

Figure 6: Lag decay estimates
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Notes: The figure displays the estimates of the lag decay parameter and the
implied shrinkage at different lags for the four-variable baseline model. A higher
value of φ4,j implies a tighter shrinkage for distant lags, thus implying that
these lags are not as important for the dynamics of the system.

The comparison of the estimated lag decay is informative for evaluating the

relevance of variable-specific Bayesian shrinkage. Figure 6 displays the implied lag

decay (i.e. 1/lφ4,j as a function of l) for the baseline model which includes output,

investment, TFP and the standard series. The results confirm our assumptions from

above. The prior variance for distant lags is considerably tighter for macroeconomic

variables than for standards. This implies that long lags of the standard series are

more important for the dynamics of the system than the ones of macroeconomic

variables. This is consistent with the idea of slow technology diffusion that motivated

the inclusion of a generous lag length and variable-specific shrinkage in the first place.

5 Discussion of results

We use a recursive (Cholesky) identification scheme to recover the structural technol-

ogy shocks from the reduced-form errors. The standard series is ordered last and the

technology shock is recovered from its reduced-form innovations. Using this ordering,

we therefore follow Shea (1999) and Alexopoulos (2011) who identify technology

shocks from patent data and technology manuals respectively. Our identification

approach is motivated by the literature on technology diffusion which has shown
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that new technologies diffuse slowly. We should therefore expect the emergence of a

desirable technology to affect standardization on impact, but not output, investment

or TFP. In addition, a Cholesky identification scheme imposes minimal assumptions

on the model.26 Nevertheless, we note that the ordering of the variables in the

VAR with Cholesky identification does not have large consequences on the impulse

responses. Ordering the standard series first leads to very similar impulse responses

where macroeconomic variables on impact are statistically not significant from zero.

Figure 7 displays the impulse responses to the identified technology shock. On

impact, standardization peaks, but the response to the shock is not persistent. This

is consistent with the idea that technology adoption is very lumpy: the catch-up

with the technology frontier entails the bundled adoption of hitherto unadopted

technologies. Once technologies are adopted in a quarter, the following quarter is

characterized by low adoption rates.

The primary interest of this paper is to investigate the aggregate effects of

technology shocks on the macroeconomic cycle. We will first discuss the reaction of

output and investment before turning to TFP further below.

5.1 The effect of technology shocks on output and investment

Impulse responses. The reaction of output and investment is positive and S-

shaped. In particular, the reaction is sluggish immediately after the shock, picks

up after 6 quarters and reaches its maximum after 16–24 quarters. The effect of

the identified technology shock is permanent. This S-shape mirrors processes of

technology diffusion analyzed in previous research (Griliches, 1957; Jovanovic and

Lach, 1989; Lippi and Reichlin, 1994): technologies propagate slowly at first and

then accelerate before the diffusion process finally levels off. The effects of the type

of technology adoption we measure in our setup materialize fully after 4–6 years.

26In contrast to the most commonly used identification schemes à la Gaĺı (1999), we have direct
access to an indicator of technology adoption and can thus exploit this data without imposing
how technology shocks affect certain variables in the long-run. Moreover, by avoiding to rely on
long-run restrictions, we make sure that we are not confounding technology shocks with any other
shocks that have a permanent effect on macroeconomic variables.
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Figure 7: IRFs – Responses to a technology shock
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Notes: Impulse responses to a technology shock identified from standardization data. The black line represents the
median response, the corresponding shaded regions denote the 16th and 84th percentiles of the posterior distribution
and dotted lines denote the 5th and 95th percentiles. The unit of the x-axis is quarters.

In an additional exercise, we explore which sub-components of investment are

most affected. To this end, we estimate a VAR where the variable representing the

respective type of investment is block-exogenous to the remaining VAR system.27

Table 3 reports the responses of several subcomponents of private fixed investment

to standardization, lagged by 16 quarters.

Table 3: Impact of a technology shock, IRF at horizon 16

Investment series

Equipment 0.74*
a Information processing equipment 1.70**
aaa Computers and periphal equipment 3.93**
aaa Other information processing equipment 0.70**
a Industrial equipment 0.38
a Transportation equipment 1.06*
a Other equipment 0.29
Intellectual property products 0.99**
a Software 1.97**
a Research and development 0.73**
a Entertainment, literary, and artistic originals 0.62**

Notes: The table displays the value of the impulse response function to the identified
technology shock for different investment types after 16 quarters (multiplied by 100).
The identified technology shock is exactly the same as the one in the baseline model
and its effect on the respective sub-component of investment is estimated by imposing
block exogeneity. “*” and “**” respectively denote significance at the 16th/84th and
5th/95th percentile.

27In particular, the estimated VAR system consists of a first block which corresponds to the baseline
model and a second block comprising one type of investment. The latter is assumed to have no
impact on the variables in the first block at any horizon. Bayesian techniques are used as described
in section 4. This block exogeneity assumption ensures that the estimated VAR coefficients
of the main block remain the same as in the baseline model and that the technology shock is
identified consistently across all investment components. Details on the implementation of the
block exogeneity VAR and its Bayesian estimation can be found in appendix C.
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The results corroborate our argument that the previously identified increase in

investment is a causal economic response to an ICT-specific technological shock: the

reaction of investment in computers and peripheral equipment exceeds the one of

other types of equipment by one order of magnitude. The second largest reaction is

the one by investment in software.

ICT standardization thus captures ICT-specific technology shocks, which translate

into an ICT-specific investment response. This response is however not limited to

specific sectors such as ICT-producing industries: computers and software are used

as input factors in a large variety of sectors of the economy which is why aggregate

ICT investment across all sectors picks up as shown in table 3.

Quantitative importance of technology shocks. In order to analyze the rela-

tive importance of the identified technology shock, we rely on variance decompositions.

In particular, we compute these variance decompositions in the frequency domain.

Appendix A describes the computation of these decompositions. The results are

displayed in the left panel of figure 8: the variance decomposition for the three

macroeconomic variables in levels are plotted against the frequency (left to right, the

axis extends from low frequencies, the long-run, to high frequencies, the short-run);

the shaded region represents business-cycle frequencies. The right panel summarizes

these results for very short-run (2–7 quarters), business cycle (8–32 quarters) and

medium-term (33–200 quarters) frequencies.

Our results indicate that the identified technology shock is not the primary cause

of macroeconomic fluctuations, but its contribution is still economically sizeable.

From figure 8, it is obvious that technology shocks play a more important role for

output, investment and TFP at lower frequencies. Between 19% and 29% of the

fluctuations of macroeconomic variables can be explained by our technology shock

at medium-term frequencies; at business cycle frequencies, we are able to explain

between 6% and 8%.

The fact that the response of output and investment to standardization is S-

shaped (figure 7) is representative of slow diffusion. It is therefore unsurprising that

standardization has a more significant effect at lower frequencies. As it takes time to

adapt the newly adopted technology to its final use, macroeconomic variables are

affected to a larger degree in the medium-run than in the short-run (see the right

panel in figure 8). A similar point is also made in Jovanovic and Lach (1997) who

link lengthy diffusion lags to the inability of the introduction of new products to

generate output fluctuations at high frequencies.
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Figure 8: Variance decompositions

(a) Graphical representation
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(b) Summary table

Frequency 2–7 8–32 33–200

Output 0.06 0.08 0.29
Investment 0.06 0.08 0.19
TFP (adj.) 0.05 0.06 0.20
Standards 0.94 0.78 0.43

Notes: The variance decompositions refer to the VAR whose impulse responses are displayed in figure 7. The left
panel displays the contribution of the identified technology shock to fluctuations of macroeconomic variables. The
shaded region corresponds to business cycle frequencies. Frequencies below 0.2 correspond to the medium- and long-
run (33–200 quarters) whereas the ones greater than 0.8 correspond to high-frequency fluctuations (< 8 quarters).
The right panel summarizes the contribution of the identified technology shock at business cycle frequencies (8–32
quarters) as well as over the medium- to long-run (33–200 quarters).

We present the variance decompositions in the frequency domain to better

be able to compare business cycle and medium/long-term implications whereas

most of the literature uses forecast error variance decompositions. Though not

directly comparable, we find similar magnitudes for the variance decompositions as

Alexopoulos (2011).28 In some other studies, technology shock explains a significantly

larger share of aggregate fluctuations.29 These larger magnitudes largely reflect

differences in scope, as many of these studies adopt an extremely broad notion of

“technology shocks”, which subsumes highly heterogeneous types of shocks to TFP.

In this paper, by contrast, we identify a precisely defined technology shock. Other

“technology shocks” such as policy changes, organizational restructuring or human

capital can be equally or even more important for aggregate volatility. However,

their propagation might be quite different, which is why it is crucial to analyze them

28Alexopoulos (2011) finds that technology shocks identified from technology publications account
for a considerable portion of GDP fluctuations (i.e. about 10–20% after 3 years), with the
contribution of technology shocks being more important at longer horizons.

29For example, Basu et al. (2006) find that shocks identified from Solow residuals which are corrected
for non-technology factors account for 17% of GDP fluctuations after 1 year and 48% after 10 years.
Using predominantly estimated structural models, the IST literature finds that the contribution
of IST shocks to aggregate volatility ranges from about 20% to 60%. Greenwood et al. (2000)
find that 30% of business cycle fluctuations can be attributed to IST shocks. A value of 50%
is found by Justiniano et al. (2010). Smets and Wouters (2007) find somewhat smaller values,
especially at longer horizons. Using structural VAR analysis, Fisher (2006) finds that 34% to
65% of output fluctuations are driven by IST shocks in the long-run whereas the contributions in
the short-run are comparable to our results.
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separately. Taking into account that we are isolating a specific technology shock, the

measured contribution to aggregate volatility appears to be economically sizeable.

5.2 Effect of technology shocks on TFP

The impulse response of TFP to the identified technology shock measures to which

extent the adoption of new technologies translates into higher productivity. Figure 7

shows that TFP decreases in the first quarters following a technology shock before

picking up in the medium- and long-run.

We interpret the temporary decrease of TFP as evidence for the incompatibility

between new and incumbent technologies. In order to verify this interpretation,

we use information on the version history of the standards in our dataset. Once

a standard is issued, firms adopt it (gradually) and thus replace old vintages of a

technology with a new one. In terms of compatibility across vintages, the effect of

adopting a standard should depend on whether it is a genuinely new standard or

whether it is an upgraded version of an already existing standard. We therefore

construct two series, one which excludes upgraded versions of previously released

standards from the standard count (“discontinuous”) and one which only consists of

upgraded versions (“continuous”). Both series measure technological change; however,

we interpret the series of new standards as discontinuous technological change.

Figure 9: IRFs – Discontinuous vs. continuous technologies
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Notes: Impulse responses to technology shocks identified from data on new standards (discontinuous) and upgraded
(continuous) standard versions. Crosses and circles denote that the response is significant at the 16th/84th percentile.
The unit of the x-axis is quarters.

Figure 9 displays the reaction to a technology shock deduced from the different

standard measures. The shock is normalized to one for better comparison. The

response of TFP is less pronounced for standard upgrades (“continuous”). New

standards (“discontinuous”), however, induce a negative and significant reaction of

TFP in the short-run and a large and significant increase in TFP in the long-run.
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These findings provide further support for the interpretation that the slowdown in

TFP is related to the fact that a new technology is incompatible with the incumbent

one.

Differentiating between discontinuous and continuous technological change also

helps to interpret the reaction of investment. In the case of continuous technological

change, investment picks up in the short-run, suggesting that the new technology

is rapidly integrated into production processes. On the contrary, for discontinuous

technological change, we observe that investment actually drops in the short-run.

One interpretation could be that there is considerable “time to implement” as existing

production structures need to be adjusted to the new technology and the different

applications of the new technology have to be developed. After sufficient time has

elapsed during the implementation phase, investment picks up considerably.

Table 4: Variance decompositions – Discontinuous vs. continuous innovation

Discontinuous Continuous

Frequency 2–7 8–32 33–200 2–7 8–32 33–200

Output 0.06 0.09 0.30 0.03 0.02 0.05
Investment 0.06 0.10 0.20 0.03 0.03 0.08
TFP (adj.) 0.06 0.06 0.21 0.03 0.02 0.05
Standards 0.94 0.79 0.45 0.97 0.74 0.09

Notes: The table displays the contribution of the discontinuous and continuous technology shocks
at business cycle frequencies (8–32 quarters) as well as over the medium- to long-run spectrum
(33–200 quarters).

These results are also mirrored in the variance decompositions (table 4). The

contribution of the discontinuous technology shock to macroeconomic fluctuations

exceeds the one of continuous technological change by a factor of 2 to 4. This holds

true for both business cycle and medium- to long-run frequencies.

Our findings on the transitory effects of standardization run counter to models

where technology shocks are assumed to lead to immediate increases in TFP. However,

our evidence on the reaction of TFP is consistent with research in industrial organi-

zation and the vintage capital literature: the introduction of a new technology can

cause inefficiencies due to the incompatibility of the new technology with the installed

base (Farrell and Saloner, 1986) or workers’ skill set (Chari and Hopenhayn, 1991).

The vintage capital literature emphasizes the role of learning and reorganization for

productivity dynamics following a technology shock (Hornstein and Krusell, 1996;

Cooley et al., 1997; Greenwood and Yorukoglu, 1997). TFP can therefore temporarily

decrease, before the implementation and deployment of the new technology raises

the level of productivity permanently as figure 7 shows.
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Since we are concentrating on ICT standards, our results also relate to the

so-called “productivity paradox”, which addresses the discrepancy between low pro-

ductivity growth and high rates of ICT deployment in the 1980s. As Robert Solow

said in 1987: “You can see the computer age everywhere but in the productivity statis-

tics”. Yorukoglu (1998) finds that the introduction of ICT requires a considerable

investment into learning. He specifically relates the incompatibility between different

ICT vintages to differences in technological standardization in ICT. Samaniego (2006)

stresses the need for reorganization at the plant level due to the incompatibility of

new ICT technologies with existing expertise.

5.3 Technological change and financial markets’ reaction

We explore whether stock market variables react to standardization events. This

analysis is motivated by the findings in Beaudry and Portier (2006), who show

that stock market variables can capture information about future macroeconomic

developments. The previous section showed that the response of macroeconomic

variables to the identified technology shock is sluggish. Despite the fact that aggregate

responses only materialize after considerable delay, agents observe the initial shock

(the standardization event). We therefore ask whether this information is picked

up by stock markets. This exercise is not only interesting due to the conceptual

similarity of news shocks and slow technology diffusion, but is also instructive in

order to verify if the above results hold in a system which includes forward-looking

variables.

In Beaudry and Portier (2006), news about future productivity growth are

associated with positive innovations in stock market variables. However, in the

context of a technology shock as defined in this paper, the sign of the reaction of

stock market variables is not straightforward. On the one hand, the value of existing

capital decreases in response to the emergence of new technologies because the former

will be replaced by the latter (Hobijn and Jovanovic, 2001). On the other hand, firms’

stock prices not only reflect the value of installed capital, but also the discounted

value of future capital, thus incorporating the expected increase in productivity

due to technology adoption.30 If the latter effect dominates, stock markets react

positively (Comin et al., 2009).

30For example, Pástor and Veronesi (2009) find that the large-scale adoption of new technologies
leads to initial surges in stock prices of innovative firms.
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VAR analysis. We therefore add the NASDAQ Composite and S&P 500 indices

to the VAR. The latter is added to the VAR as it is commonly used to identify news

shocks as in the seminal contribution of Beaudry and Portier (2006).31 However,

since we specifically focus on technology shocks, we also add a stock market index

that captures developments in the field of technology as the NASDAQ does. They

are ordered last as we assume that financial markets are by their very nature forward-

looking – contrary to macroeconomic variables which do not react on impact due to

implementation lags and slow diffusion. As before, we recover the technology shock

from the innovation of the standard series. Based on the above results, we keep the

identification that macroeconomic variables (output, investment, TFP) do not react

on impact.32 We therefore do not model a news shock: in contrast to an identification

based on VAR innovations in stock prices (or TFP), our identified technology shock

is orthogonal to those. Our identification assumption is based on slow diffusion (i.e.

no contemporaneous impact on output, investment or TFP) which differs from an

assumption aimed at identifying news shocks.

Results are displayed in figure 10 which, first of all, shows that the findings from

the earlier exercise (i.e. figure 7) are not affected by the inclusion of financial market

variables. The impulse responses in figure 10 show that both the S&P 500 as well

as the NASDAQ Composite react positively to a technology shock. In particular,

the reaction of the NASDAQ Composite, which mainly tracks companies in the

technology sector, is more pronounced on impact compared to the response of the

more general S&P 500. The reaction of the S&P 500 and NASDAQ Composite indices

confirm that financial markets pick up the information about future productivity

increases despite the initial decline in TFP and the S-shaped response of output and

investment.

The identified shock explains a smaller share of aggregate volatility than typically

found in the news shock literature.33 As before, this is due to the fact that we are

isolating a very specific shock, which comprises only a subset of the disturbances

31Kurmann and Mertens (2014) discuss the identification problems that arise when a VAR with first-
differenced variables that includes more than TFP and stock prices is used in combination with
the identification procedure of (Beaudry and Portier, 2006) who rely on long-run restriction and
assumptions on cointegration relationships. Though we use a multivariate VAR, our identification
is immune to this criticism as we are estimating the VAR in levels and rely on short-run restrictions.

32This is also motivated by alternative identification schemes where the standard series is ordered
first and impulse responses of output, investment and TFP are not significant on impact.

33As above, we note that the variance decomposition in the frequency domain and conventional
forecast error variance decompositions are not comparable. In Beaudry and Portier (2006) and
Barsky and Sims (2011), news shocks account respectively for approximately 40–50% and 10–40%
of output fluctuations at horizons of 1 to 10 years.
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Figure 10: IRFs – Responses to a technology shock
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Notes: Impulse responses to a technology shock identified from standardization data.
The black line represents the median response, the corresponding shaded regions
denote the 16th and 84th percentiles of the posterior distribution and dotted lines
denote the 5th and 95th percentiles. The unit of the x-axis is quarters.

that news shocks comprise (i.e. news about future productivity growth which are

unrelated to technological change that is triggered by standardization).

Analysis using daily stock market data. We further investigate the relation

between stock markets and standardization by using data at a higher frequency than

usual macroeconomic VAR analysis permits. The goal of this exercise is to analyze

the evolution of firms’ share price around the decisions on standard releases. Such

an event study approach, though not without its flaws, is informative about whether

stock markets pick up the information contained in standard releases on impact.

We exploit available data on the dates of the plenary meetings of an important

SSO, namely 3GPP. At the plenary meetings, representatives of all 3GPP member

firms vote on fundamental technological decisions and the release of new standards.34

Prior to the plenary meeting, there is considerable uncertainty regarding the outcome

of the vote and the features of the future standard.

34Proposed technology standards, change requests and technical reports are drafted and discussed in
more frequent meetings of smaller working groups. Important technological decisions are however
taken at plenary meetings in an open vote.
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We use data on 3GPP meeting dates and participants for the years 2005–2013. In

total, 208 plenary meetings were held during that time.35 We use meeting attendance

data to identify the ten firms that sent the largest number of representatives to

plenary and working group meetings36 and collect daily data on their share prices

(end-of-day). We extract the share price evolution of each of the ten firms five days

prior and ten days following each meeting start date and normalize the series to

unity one day prior to the start of the meeting. We also construct a second similar

series for all non-meeting dates and calculate the mean over all non-meeting dates.

We then subtract this second series from the share price series for each meeting date.

The resulting series is thus normalized to zero one day before the start of the meeting.

We do so in order to evaluate to what extent meeting dates generate stock price

movements in excess of normal developments, therefore excluding that general trends

over 2005–2013 influence the results.

The plenary meetings at 3GPP last several days and comprise several announce-

ments, which cannot be timed precisely. Compared to other event study analyses

that investigate the impact of announcements, we therefore have to use a very large

window. As a consequence, other events might occur within the same time frame.

Since we are averaging over 208 meetings, we should a priori be able to eliminate

these confounding events. However, the distribution of the stock market series around

the meeting dates remains skewed, which is why we use the median over the 208

meetings to trace out the typical reaction of stock market variables to decisions at

3GPP plenary meetings.

The evolution of share prices before and after the start of a plenary meeting

is depicted in figure 11. The vertical line marks the start of the meeting. Plenary

meetings typically last three or four days. Figure 11 shows that the average share

price fluctuates around its normalized value of zero prior to the meeting. With

the onset of the meeting, however, share prices continuously rise. We replicate the

analysis using the broader stock market indices NASDAQ and S&P 500. Both indices

exhibit a positive response to 3GPP plenary meetings, which is very similar to the

behavior of the share prices of the ten most involved 3GPP members. Six to seven

days after the start of the meeting, stock prices have significantly increased by 0.3–

0.5%. The transition after the start of the meeting is very smooth. Most likely, this

35Plenary meetings are held by Technical Specification Groups, TSGs, of which there are four
different ones. As these meetings are often held in parallel, the bootstrapping of the confidence
bands is obtained by clustering on the level of the grouped (parallel) dates.

36The results do not hinge on the number of firms we include. Results are similar for the top 20,
30, 40 or 50 participants.
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Figure 11: Share prices and SSO meetings
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Notes: The figure displays the median share price of the ten largest firms attending the SSO around the first day
of the SSO meeting (vertical line at x = 0). The unit of the x-axis is (trading) days. The median is taken over
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is due to the fact that meetings last between one and five days. Therefore, the effect

of decisions at plenary meetings is not timed identically across all meetings. Overall,

the reaction of financial market data shows that important standardization decisions,

such as those made during the plenary meetings of 3GPP, disclose information that

is relevant to the general economy.

Which forces could explain the overall positive reaction to meeting events despite

the fact that a particular firm’s preferred standard might not be chosen? In the

latter case, it is likely that individual firms’ share prices can also react negatively to

a particular meeting. The overall positive reaction, however, can be explained by the

resolution of uncertainty that the votes at plenary meetings bring about. If investment

is irreversible, uncertainty is delaying firms’ investment decisions (Bernanke, 1983;

McDonald and Siegel, 1986; Pindyck, 1991; Bloom, 2009). A standard that has

not yet been voted on will not generate any pick-up in investment as long as the

uncertainty about its fate has not been resolved. In the same way, a vote to discard

a standard reduces uncertainty and thus leads to a positive reaction by financial

markets. We therefore trace out the evolution of the VIX, a measure of uncertainty

in financial markets, around 3GPP meetings. As shown in figure 11, the VIX declines

with the onset of the meeting and remains significantly below zero after the start of

the meeting.
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6 Extensions

6.1 Enlarging the definition of relevant standards

All results presented so far were obtained using a series of ICT standard documents

released by US-based SSOs. In this section, we will analyze the robustness of our

results by relaxing both the technological and the geographical definitions we used

in computing the standard counts.

First, the US economy may also respond to standards released by non-US based

SSOs, and in particular a number of SSOs with worldwide outreach (e.g. the

International Organization for Standardization, ISO). The most important and most

relevant standards issued by these international bodies are generally accredited at US

SSOs included in the baseline sample (such as ANSI). Nevertheless, the documents

issued by international SSOs largely outnumber standard documents issued by US

SSOs and include several well-known and important technology standards in the

area of ICT. We therefore compute a combined series counting ICT standards issued

by both US and international SSOs. We remove duplicates resulting from multiple

accreditations of the same document and always keep only the earliest date of

standard release (details in appendix G).

Second, technological change in fields outside of, but closely related to ICT might

also matter for aggregate volatility. This is for instance the case for the field of

electronics, including semiconductors. We therefore construct a series of US standard

releases in a wider technological field including information and telecommunication

technologies, but also electronics and image technology (ICS classes 31 and 37).

We plot both these new series against the baseline one (only ICT standards from

US SSOs) in figure 12. The plots show that there is a clearly positive correlation of

the three series (in part due to the fact that one series includes the other); however,

a large number of the spikes between international and US standards do not coincide.

The correlation between the ICT standard count and the standard count including

both ICT and electronics (both from US SSOs) is stronger than the one between ICT

standards from US SSOs only and the ones from all SSOs (international and US).
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Figure 12: Standard series 1975Q1–2011Q4
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Notes: The series display the number of standard counts per quarter. The left-hand side y-axis
corresponds to ICT standards (ICS classes 33-35) as well as ICT and electronics standards
(ICS classes 31–37) which were released by US standard setting organizations over the period
1975Q1–2011Q4. The right-hand side corresponds to ICT standards released both by US and
international standard setting organizations over the same period.

We use the new standard series to compare the results with the ones obtained in

the baseline model. The IRFs from this robustness check are displayed in figure 13.

Responses from the baseline model of figure 7 are displayed for comparison and

the shock is normalized to one. The IRFs are qualitatively and quantitatively very

similar to the results presented so far. We are therefore able to confirm our previous

results with data series that include much larger numbers of documents. Results are

not sensitive to the extension of the standard count to international SSOs or to a

broader technological field.

33



Figure 13: IRFs – Larger definition of standard counts
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Notes: Impulse responses to technology shocks identified from standardization data, using different definitions of
relevant standards. “US ICT” corresponds to the standard counts in the baseline model. “US+Int ICT” denotes ICT
standards (ICS classes 33-35) released both by US and international SSOs. “US ICT+Electronics” comprises ICT and
electronics standards (ICS classes 31–37) which were released by US standard setting organizations. Lines represent
the median responses to technology shocks identified from standardization data. Crosses and circles denote that the
response is significant at the 16th/84th percentile. The unit of the x-axis is quarters.

6.2 Weighting standards by their relative importance

Our standard series attributes the same importance to every standard. As a first

means to take into account the relative importance of individual standards, we weight

standards by the number of references received from ulterior standard documents

(forward-references). A standard references another standard if the implementation of

the referencing standard necessitates the implementation of the referenced standard.

The number of forward-references is thus a good indicator for the number of different

applications in which a standard is used. In order to compare the relevance of

standards released at different points in time, we only count the references received

within the first four years after the standard release (and accordingly we are able to

use standard documents released up to 2011 for this analysis).

A second way to control for the importance of standards is to weight standards

by the number of pages. The number of pages is a plausible indicator for the

technological complexity of the standard. SSOs and their members have an incentive

to keep standards short in order to facilitate implementation. A standard document

represents the most restricted description of a technology that suffices to ensure

interoperability. Against this background, we hypothesize that more voluminous

standard documents describe more complex technologies.

In particular, the two weighting schemes follow Trajtenberg (1990) who constructs

citation-weighted patent counts. Similarly, we construct weighted standard counts
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(WSC):

WSCx
t =

nt∑
i=1

(1 + xi,t) where x = r, p

where r denotes the number of references and p denotes the number of pages (divided

by 10) per standard i; nt is the number of standards per quarter t. This measure

thus assigns a value of one to every standard and reference/page.

Figure 14: IRFs – Different weighting schemes
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significant at the 16th/84th percentile. The unit of the x-axis is quarters.

Figure 14 displays the results of the baseline VAR system when ICT standards

are replaced by the weighted time series counts (responses from the baseline model

of figure 7 are displayed for comparison). As before, we normalize the shock to

one for better comparison. The results show that the dynamics hardly change. A

shock to the reference-weighted series provokes a pronounced negative and significant

response of TFP in the short-run, before picking up permanently. The response of

TFP to innovations in the page-weighted count is significant at short horizons, but in

general more muted. Variance decompositions mirror this finding. The contribution

of the reference-weighted series is more important than the one using page-weights:

12% of the fluctuations of output at business cycle frequencies and 27% at longer

frequencies are explained (compared to respectively 4% and 5%). In general, we

find that weighting standard documents by references generates more pronounced

dynamics than weighting by pages.
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6.3 Larger VAR system

The Bayesian VAR approach allows us to include a large number of variables as the

complexity of the system is automatically taken care of by the adjustment of the

hyperparameter φ1. In order to verify the robustness of our results, we estimate a

larger VAR system adding the following variables to the baseline model: consumption

of goods and services, hours worked in the business sector, capacity utilization, the

relative price of investment in equipment and software as well as the federal funds

rate. TFP (adjusted for capacity utilization) is split into TFP in the investment

goods sector as well as the consumption goods sector. As in section 5.3, we include

stock market indices. We identify the technology shock as before and restrict the

system to only allow for a contemporaneous reaction of standards and the stock

market indices in response to a technology shock. All variables enter the VAR in log

levels, except the Federal Funds rate and capacity utilization which are not logged.

Figure 15: IRFs – Large model
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Notes: Impulse responses to a technology shock identified from standardization data. The black line represents the
median response, the corresponding shaded regions denote the 16th and 84th percentiles of the posterior distribution
and dotted lines denote the 5th and 95th percentiles. The unit of the x-axis is quarters.

The results are displayed in figure 15. We first note that our results from

the previous sections also hold in the larger system. The previously found results
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regarding the reaction of TFP seems to be driven by TFP in the investment sector.

Figure 15 shows that the identified technology shock produces comovement of output,

hours, consumption and investment. As before, there is slow diffusion.

The results in figure 15 also demonstrate that a reduction of the relative price of

investment and a rise in capacity utilization only occurs in the medium-run. This is in

line with our interpretation that standardization kicks off the implementation of the

new technology, but it takes time until the new technology can be effectively used for

the production of capital goods. Only when the technology has been implemented by

a large number of producers can we expect to observe the reaction typically provoked

by an IST shock. In particular, the relative price of investment decreases and one

observes a higher rate of utilization of existing capital: the marginal utilization

cost of installed capital is lowered when its relative value decreases in the light

of technologically improved new vintages of capital. In the case of our identified

technology shock, we observe these reactions only in the medium-term, thus hinting

to the existence of considerable implementation lags after a standardization event.

6.4 Annual data

For some of the standards in our dataset, information on the date of release only

includes the year, but not the month of the release. In a last step, we want to test

whether the fact that we distributed these standards uniformly across the quarters of

the respective release year affects our results. We therefore construct annual count

data for each of the standard series. We estimate a Bayesian VAR as before, using 3

lags (corresponding to the 12 lags used above for quarterly data) and determining

the hyperparameters of the model as described in section 4.

Figure 16: IRFs – Annual data
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The responses from the model estimated with annual data are very similar to the

ones from quarterly data. The IRFs of output and investment in figure 16 are clearly

S-shaped. Whereas there is practically no reaction of output and investment during

the first year following the shock, there is a clear increase in the following 2 years

after which this expansion levels off. We also find the same short-term reaction for

TFP as before: the IRF 2–3 years after the shock is negative before turning positive

thereafter. In the long-run, TFP is increasing markedly.

7 Conclusion

This paper analyzes the role of standardization for macroeconomic fluctuations.

Its main contribution is to exploit the microeconomic mechanisms of technology

adoption for the macroeconomic analysis of technological change. The complex

interdependencies of various technologies necessitate the coordinated establishment

of common rules. This process of technological standardization is a crucial element of

technology adoption. We therefore use data on standard releases in order to analyze

the effect of new technologies on the macroeconomic cycle.

Our results contrast with previous findings and challenge several assumptions on

technology that are widely used in macroeconomic research. Business cycle theories

generally conceive technology to be an exogenous process. In these models, positive

technology shocks translate into movements of macroeconomic variables on impact,

in particular into immediate increases in TFP. In this paper, we draw a picture that

is more in line with the microeconomic concept of technology: adoption is a discrete

decision, various technologies are interconnected, firms coordinate the development

and adoption of interdependent technologies, technology diffuses slowly and its effects

only materialize after considerable delay.

Although we isolate a very specific shock out of a large collection of shocks

that usually constitute “technology” in macroeconomic models, its contribution to

aggregate volatility is non-negligible. Yet, the effects are more sizeable at the medium-

term horizon than in the short-run. We show that our identified technology shock

generates an S-shaped response of output and investment as is typical of technological

diffusion. Regarding transitory dynamics, we show that technology shocks can lead

to an increase in productivity in the long-run, but the very nature of new technologies

(and in particular discontinuous technological change) can cause TFP to decrease

in the short-run. We can therefore reconcile the fact that productivity slowdowns

are observed in the data with the notion of a technology frontier which increases

constantly.
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Our results also help to gain insight into the nature of shocks analyzed in the

news shock literature. These news shocks are rarely linked to their specific underlying

causes. This paper shows that standardization is a trigger of technology diffusion

and therefore informs agents about future macroeconomic developments. For this

reason, forward-looking variables such as stock market indices, and in particular

the NASDAQ Composite index which tracks high-tech companies, can react to a

technology shock on impact.

Overall, this paper proposes novel data and concepts originating from the litera-

ture on industrial organization and innovation economics to study the macroeconomic

implications of technological change. Technology standards provide detailed informa-

tion on the adoption of new technologies. This paper shows that this information

can help opening the black box that technology and productivity often represent in

macroeconomics. There are ample opportunities for future research on technological

standardization. To this end, we make our data series available to researchers, to

enhance our understanding of the role of technological innovation for both business

cycles and growth.
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Technical appendix

A Variance decompositions in the frequency domain

This appendix describes the computation of the variance decompositions in the

frequency domain. We largely follow the notation of Altig et al. (2005) who analyze

the quantitative impact of various shocks on the cyclical properties of macroeconomic

variables.

The structural moving-average representation of Yt is

Yt = D(L)εt where D(L) =
∞∑
k=0

DkL
k

where L represents the lag operator. Inverting D(L) yields:

F (L)Yt = εt where F (L) = B0 −
∞∑
k=1

BkL
k = B0 −B(L)

B0Yt = B1Yt−1 +B2Yt−2 + . . .+ εt

The reduced-form VAR model

Yt = A(L)Yt + ut where E[utu
′
t] = Σ and A(L) =

∞∑
k=1

AkL
k

relates to the structural representation as follows:

Yt = (B0)−1B(L)Yt + (B0)−1εt

= A(L)Yt + ut where A(L) = (B0)−1B(L) and ut = (B0)−1εt

= [I − A(L)]−1CC−1ut where C = (B0)−1

= [I − A(L)]−1Cεt where εt = C−1ut and E[εtε
′
t] = B0ΣB′0 = I

In practice, a VAR of lag order p is estimated; hence, the infinite-order lag polynomial

A(L) is approximated by a truncated version
∑p

k=1 AkL
k of order p. The matrix B0

maps the reduced-form shocks into their structural counterparts. Identification of

the structural shocks can be achieved using various strategies such as short-run and

long-run restrictions. Using a recursive Cholesky identification scheme, the variance-

covariance matrix of residuals of the reduced-form VAR, Σ, can be decomposed in

order to restrict the matrix C:

Σ = CC ′ and C = chol(Σ)

40



The variance of Yt can be defined in the time domain:

E[YtY
′
t ] = [I − A(L)]−1CC ′ [I − A(L)′]

−1

Deriving its equivalent representation in the frequency domain requires the use of

spectral densities. The spectral density of the vector Yt is given by:

SY (e−iω) =
[
I − A(e−iω)

]−1
CC ′

[
I − A(e−iω)′

]−1

The spectral density due to shock εt,j is equivalently:

SY,j(e
−iω) =

[
I − A(e−iω)

]−1
CIjC

′ [I − A(e−iω)′
]−1

where Ij is a square matrix of zeros with dimension equal to the number of variables

and the j-th diagonal element equal to unity. The term A(e−iω)′ denotes the transpose

of the conjugate of A(e−iω). We are interested in the share of the variance of variable

Yk,t which can be explained by shock εt,j. The respective variances are restricted to

a certain frequency range [a, b]. The ratio of variances to be maximized is then:

Vk,j =

∫ b
a
ι′kSY,j(e

−iω)ιkdω∫ b
a
ι′kSY (e−iω)ιkdω

where ιk is a selection vector of zeros and the k-th element equal to unity. For

business cycle frequencies with quarterly data, the frequency range a = 2π
32

and b = 2π
8

is used. The integral can be approximated by

1

2π

∫ π

−π
S(e−iω)dω ≈ 1

N

N
2∑

k=−N
2

+1

S(e−iωk) where ωk =
2πk

N

for a sufficiently large value of N . The contribution of shock εj to the variance of

variable Yt,k at certain frequencies is consequently determined by:

Vk,j =

∑N/b
k=N/a ι

′
kSY,j(e

−iωk)ιk∑N/b
k=N/a ι

′
kSY (e−iωk)ιk
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B Details on the BVAR with a Normal-Wishart prior

This appendix describes the estimation procedure used throughout the paper. The

reduced-form VAR system can be written as follows:

Yt = XtA+ ut where E[utu
′
t] = Σ

ut ∼ N (0,Σ)

vec(ut) ∼ N (0,Σ⊗ IT−p)

Xt comprises the lagged variables of the VAR system and A denotes the coefficient

matrix. The Normal-Wishart conjugate prior assumes the following moments:

Σ ∼ IW(Ψ, d)

α = vec(A) | Σ ∼ N (a,Σ⊗ Ω)

The prior parameters a, Ω, Ψ and d are chosen to ensure a Minnesota prior structure.

The literature has usually set the diagonal elements of Ψ, ψi, proportional to the

variance of the residuals of a univariate AR(p) regression: ψi = σ2
i (d− k − 1) where

k denotes the number of variables. This ensures that E(Ψ) = diag(σ2
1, . . . σ

2
k) which

approximates the Minnesota prior variance. Following Giannone et al. (2015), one

can treat the diagonal elements of Ψ as hyperparameters in order to ensure that a

maximum of the prior parameters is estimated in a data-driven way. For the Wishart

prior to be proper, the degrees of freedom parameter, d, must be at least k+ 2 which

is why we set d = k + 2.

This paper generalizes the Minnesota approach by allowing for a variable-specific

lag decay φ4,j . It can be shown that a Minnesota prior structure with variable-specific

lag decay is imposed if the diagonal elements of Ω are set to (d− k − 1)φ1/(l
φ4,jψj).

As a result, the prior structure writes as follows:

αijl | Σ ∼ N
(
aijl,

φ1

lφ4,j
ψi
ψj

)
with aijl =

{
δi if i = j and l = 1

0 otherwise

The above expression shows that the Normal-Wishart prior maps into a Minnesota

design with the particularity of φ2 being equal to one and φ4,j being variable-

specific. We have to impose φ2 = 1 due to the Kronecker structure of the variance-

covariance matrix of the prior distribution which imposes that all equations are

treated symmetrically; they can only differ by the scale parameter implied by Σ (see

Kadiyala and Karlsson, 1997; Sims and Zha, 1998). As a corollary, the lag decay

parameter φ4,j can be specific to variable j, but cannot differ by equation i.
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Since the prior parameters a, Ω, Ψ and d are set in a way that they coincide

with the moments implied by the Minnesota prior, they thus depend on a set of

hyperparameters Θ which comprises φ1, φ4,j and ψi (φ2 and φ3 are fixed). Integrating

out the uncertainty of the parameters of the model, the marginal likelihood conditions

on the hyperparameters Θ that define the prior moments. Maximizing the marginal

likelihood with respect to Θ is equivalent to an Empirical Bayes method (Canova,

2007; Giannone et al., 2015) where parameters of the prior distribution are estimated

from the data. The marginal likelihood is given by

p(Y ) =

∫ ∫
p(Y | α,Σ) p(α | Σ) p(Σ) dα dΣ

and analytical solutions are available for the Normal-Wishart family of prior distri-

butions (see Giannone et al., 2015 for an expression and a detailed derivation).

Maximizing the marginal likelihood (or its logarithm) yields the optimal vector

of hyperparameters:

Θ∗ = arg max
Θ

ln p(Y )

Giannone et al. (2015) adopt a more flexible approach by placing a prior structure

on the hyperparameters themselves. The procedure used in this paper, however, is

equivalent to imposing a flat hyperprior on the model.

We implement a Normal-Wishart prior where the prior mean and variance is

specified as in the original Minnesota prior and we simulate the posterior using

the Gibbs sampler.37 More specifically, the prior is implemented by adding dummy

observations to the system of VAR equations (Sims and Zha, 1998). The weight of

each of the dummies corresponds to the respective prior variance.

C Implementing block exogeneity

In section 5, we implement a block exogeneity VAR where we add series of investment

components one by one to the baseline VAR. The purpose of this exercise is to ensure

37The original Minnesota prior assumes that the variance-covariance matrix of residuals is diagonal.
This assumption might be appropriate for forecasting exercises based on reduced-form VARs, but
runs counter to the standard set-up of structural VARs (Kadiyala and Karlsson, 1997). Moreover,
impulse response analysis requires the computation of non-linear functions of the estimated
coefficients. Thus, despite the fact that analytical results for the posterior of the Minnesota prior
are available, numerical simulations have to be used.
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that the technology shock is identified as in the baseline model. This appendix

describes the estimation procedure which follows Zha (1999).

We start from the structural representation of the VAR model:

F (L)Yt = εt where F (L) = B0 −B(L)

The structural model can be split in several blocks. Since we are working with

two blocks in section 5, the following illustration concentrates on this case; but the

exposition also holds for the general case of several blocks (see Zha, 1999).(
F11(L) F12(L)

F21(L) F22(L)

)(
Y1t

Y2t

)
=

(
ε1t

ε2t

)

The above model can be normalized by premultiplying it with the block-diagonal

matrix of the contemporaneous impact coefficients:(
B−1

0,11 0

0 B−1
0,22

)(
F11(L) F12(L)

F21(L) F22(L)

)(
Y1t

Y2t

)
=

(
B−1

0,11 0

0 B−1
0,22

)(
ε1t

ε2t

)

The variance of the normalized error terms is block-orthogonal with block-diagonal

entries (for i = 1, 2):

Σii =
(
B−1

0,ii

) (
B−1

0,ii

)′
Replace F (L) = B0 −B(L) in the normalized VAR system:(

B−1
0,11 0

0 B−1
0,22

)(
B0,11 −B11(L) B0,12 −B12(L)

B0,21 −B21(L) B0,22 −B22(L)

)(
Y1t

Y2t

)

=

(
B−1

0,11 0

0 B−1
0,22

)(
ε1t

ε2t

)

Each block then writes as:

B−1
0,ii

[
B0,ii −Bii(L) B0,ij −Bij(L)

]( Yit

Yjt

)
= B−1

0,iiεit[
I −B−1

0,iiBii(L)
]
Yit +

[
B−1

0,iiB0,ij −B−1
0,iiBij(L)

]
Yjt = B−1

0,iiεit
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If there is block recursion (defined as a lower triangular Cholesky decomposition),

i.e. block j (2) does not impact block i (1) contemporaneously, we have B0,ij = 0:

[
I −B−1

0,iiBii(L)
]
Yit −B−1

0,iiBij(L)Yjt = B−1
0,iiεit

If, in addition there is block exogeneity, i.e. block j (2) does not impact block i (1)

at any horizon, we have B0,ij = 0 and Bij(L) = 0:

[
I −B−1

0,iiBii(L)
]
Yit = B−1

0,iiεit

If block 2 does not impact block 1 at any horizon (B0,12 = 0 and B12(L) = 0), the two

blocks can be estimated separately. Block 1 consists in regressing contemporaneous

values of the variables in block 1 on their lagged values:

Y1t = B−1
0,11B11(L)Y1t +B−1

0,11ε1t

Block 2 consists in regressing contemporaneous values of the variables in block 2 on

lagged values of all variables, but also on contemporaneous values of the variables in

block 2:

Y2t = B−1
0,22B22(L)Y2t +

[
B−1

0,22B21(L)−B−1
0,22B0,21

]
Y1t +B−1

0,22ε2t

Due to the block-recursive structure of the model, there is a one-to-one mapping

between B0,ii and Σii. We therefore employ a Gibbs sampler to alternately draw

Σii from an inverted Wishart distribution and the reduced form coefficients from a

normal distribution. The structural parameters can be recovered from the reduced

form model by the direct mapping via B0,ii. In particular, the estimate of the

contemporaneous impact matrix, B0,21, can be retrieved from its reduced-form

estimate, B−1
0,22B0,21, by premultiplication with B0,22. As described in appendix B,

we also implement an informative prior for the BVAR with block exogeneity. The

Minnesota prior moments are chosen similarly to the baseline model.

Since the purpose of imposing block exogeneity is to identify the same technology

shock across all models which only differ in the sectoral investment variable that is

added to the system, we fix the hyperparameters for block 1, i.e. φ1, φ
(1)
4,j and ψ

(1)
i ,

where the superscript refers to the variables in block 1, to the estimates from the

baseline model and estimate the remaining parameters, φ
(2)
4,j and ψ

(2)
i , via the empirical

Bayes method described in appendix B. Given that φ1, φ
(1)
4,j and ψ

(1)
i are fixed in this

set-up, we maximize the logarithm of the marginal likelihood corresponding to the

second block to find the values of φ
(2)
4,j and ψ

(2)
i .
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D Non-fundamentalness in VAR representations

The implications of slow technology diffusion pose macroeconometric challenges which

require the use of meaningful information about technology adoption (Lippi and

Reichlin, 1993; Leeper et al., 2013). This problem is known as non-fundamentalness

and described in this appendix. Consider a Wold representation for Yt:

Yt = K(L)ut where E[utu
′
t] = Σ

where K(L) is a lag polynomial. This moving average representation is not unique

as shown by Hansen and Sargent (1991a). First, one can obtain an observationally

equivalent representation by finding a matrix which maps the reduced-form errors

into structural ones:

Yt = K(L)CC−1ut = D(L)εt

Defining the structural shocks as εt = C−1ut and the propagation matrix as D(L) =

K(L)C, the above transformation is concerned with the well-known problem of

identification. Knowledge or assumptions about the structure of the matrix C,

motivated by economic theory, helps recovering the structural shocks. A second

form of non-uniqueness, non-fundamentalness, is hardly ever discussed in empirical

applications, but is as important as identification. As discussed in Hansen and

Sargent (1991a,b), there exist other moving-average representations such as:

Yt = K(L)ut where E[utu
′
t] = Σ

Formally speaking, both Wold representations express Yt as a linear combination of

past and current shocks (ut or ut respectively) which is why their first and second

moments coincide. K(L) and K(L) and the corresponding white noise processes

produce the same autocovariance-generating function:

K(z) ΣK(z−1) = K(z) ΣD(z−1)

Though both the Wold representations of Yt in terms of ut and ut display the same

autocovariance structure, the interpretation of ut and ut is not the same. In particular,

if the space spanned by ut is larger than the one spanned by Yt, the structural shocks

cannot be recovered from past and current observations of Yt. In this case, knowing

Yt is not enough to identify εt, independently of the identification assumptions in C.
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We then say that the Wold representation is not fundamental: the polynomial K(L)

has at least one root inside the unit circle and is thus not invertible.

Non-fundamentalness can arise in models of slow technology diffusion or news

shocks. For example, in the specific case of Lippi and Reichlin (1993), non-

fundamentalness arises as learning-by-doing dynamics lead to a delayed increase in

productivity following a technology shock. Recently, the news shock literature has

reconsidered the issue of non-fundamentalness. Shocks are pre-announced, be it due

to fiscal foresight (Leeper et al., 2013) or due to news about future productivity (Fève

et al., 2009; Leeper and Walker, 2011). Whenever the pre-announcement of shocks is

observed by economic agents but not by the econometrician, VAR representations

can be plagued by non-fundamentalness.

In a nutshell, there are two ways to solve the non-fundamentalness problem. The

first one consists in modelling information flows directly which involves making very

strong assumptions about time lags and functional forms of diffusion processes (i.e.

K(L)) or the way news shocks materialize. The second one is about using direct

measures of news or diffusion which is the approach taken in this paper.

47



Data appendix

This data appendix describes the construction of the investment rates and ICT

dependency ratios in section 2 (data appendix E). The table in data appendix F lists

all the data sources for the empirical analyses in sections 4–6. Information on the

construction of the standards data can be found in data appendix G.

E Data on investment rates and ICT dependence

We compute investment rates and a measure of ICT dependence for 61 industries

(listed below).

The investment rate is defined as current investment in industry j scaled by last

period’s capital stock. Data are taken from the BEA’s Fixed Assets accounts (section

3); the investment rate is the ratio of investment in private fixed assets (table 3.7)

over the current-cost net stock of private fixed assets (table 3.1) which is lagged by

one year. We consider investment in private fixed assets (“Total”) as well as the

disaggregation into investment in private equipment (“Equipment”), investment in

private intellectual property products (“IP”) and investment in private structures

(“Structures”).

For our measure of ICT dependence we rely on the BEA’s input-output tables

(use tables before redefinitions). Dependence on ICT inputs is defined as the share

of a sector’s inputs from the following sectors in overall inputs: (1) Computer and

electronic products [NAICS 334], (2) Publishing industries, except internet (includes

software) [NAICS 511], (3) Broadcasting and telecommunications [NAICS 513], (4)

Data processing, internet publishing, and other information services [NAICS 514]

and (5) Computer systems design and related services [NAICS 5415].

There are reporting breaks in the BEA input-output data which necessitate that

we aggregate certain sectors up in order to have consistent time series. As the fixed

assets tables do not contain information on the government sector, we drop these

from the dataset.
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F Macroeconomic data sources

Variable Description Source Details

Output Output in business sector
(BLS ID: PRS84006043)

Bureau of Labor
Statistics (BLS)

Index (2009=100),
seasonal and per
capita adjustment

Investment Real private fixed investment
(NIPA table 5.3.3 line 1)

Bureau of
Economic Analysis
(BEA)

Index (2009=100),
seasonal and per
capita adjustment

Types of
investment

Equipment Bureau of
Economic Analysis
(BEA)
NIPA table 5.3.3
lines 9–19

Index (2009=100),
seasonal and per
capita adjustmentInformation processing equipment

Computers and peripheral equipment

Other equipment

Industrial equipment

Transportation equipment

Other equipment

Intellectual property products

Software

Research and development

Entertainment, literary, and artistic originals

Consumption
(Real personal
consumption)

Consumption expenditures for goods and services
(NIPA table 2.3.3 line 1)

Bureau of
Economic Analysis
(BEA)

Index (2009=100),
seasonal and per
capita adjustment

Hours Hours worked in business sector (BLS ID:
PRS84006033)

Bureau of Labor
Statistics (BLS)

Index (2009=100),
seasonal and per
capita adjustment

Total factor
productivity

Capacity utilization adjusted total factor
productivity (based on data from business sector)

John Fernald (San
Francisco Fed)

Index (1947 =
100)

Capacity utilization adjusted total factor
productivity in “investment sector” (equipment
and consumer durables)

Capacity utilization adjusted total factor
productivity in “consumption sector”
(non-equipment)

Stock market
indices

S&P 500 Datastream Deflated, per
capita adjustment

NASDAQ Composite Index

Capacity
utilization

Capacity utilization, total index Federal Reserve
Board

Index in %,
seasonal
adjustment

Relative price
of investment

Price of investment in equipment (NIPA table
5.3.4 line 9) divided by the price index for
personal consumption expenditures for
non-durable goods (NIPA table 2.3.4 line 8)

Bureau of
Economic Analysis
(BEA)

Indices
(2009=100),
seasonal
adjustment

Federal funds
rate

Federal fund effective rate Federal Reserve
Board

In %

Population Civilian noninstitutional population over 16
(BLS ID: LNU00000000Q)

Bureau of Labor
Statistics (BLS)

In hundreds of
millions

Price deflator Implicit price deflator of GDP in the business
sector
(BLS ID: PRS84006143)

Bureau of Labor
Statistics (BLS)

Index (2009=100),
seasonal
adjustment

Share prices Individual firms’ share prices Bloomberg End-of-day prices
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G Construction of standards data

Data source. We obtain information on standard releases from the Searle Center

database on technology standards and SSOs (Baron and Spulber, 2018). The Searle

Center database draws information from various sources, including PERINORM, IHS

Standards Store, DocumentCenter and the websites of various SSOs. PERINORM

is a database with bibliometric information on standards, which is hosted by the

national SSOs of France, Germany and the UK, but also includes information on

standards issued by a large number of other organizations. In particular, PERI-

NORM provides data on standards issued by 20 of the most relevant SSOs in the US.

PERINORM comprises detailed bibliographic information on more than 1,5 million

standard documents. IHS Standards Store and DocumentCenter are online stores

offering standard documents for sale. The websites provide free access to biblio-

metric information on standards, such as title, technological class, publication date,

references and the identity of the issuing SSO. IHS Standards Store and Document

Center provide this information for the standards issued by more than 600 SSOs. In

addition to these sources, the Searle Center database uses data directly obtained

from several of the most relevant SSOs, including 3GPP (3rd Generation Partnership

Project) and IETF (Internet Engineering Task Force).

The initial dataset comprises standard documents issued by a US (469,859

documents) or international SSO (308,798 documents). For each standard, we

retrieve (when available) the identity of the issuing SSO, the date of standard

release, references to other standards, equivalence with other standards, version

history (information on preceding or succeeding versions), number of pages and the

technological classification.

Data transformations. In a first step, we restrict the sample to standard docu-

ments issued by an organization with the country code “US”. This results in a list

of 474 SSOs. Our sample includes the most established formal SSOs, such as the

American Society for Testing and Materials (60,653 standard documents), the Amer-

ican National Standards Institute (37,390 standards documents), and the Society

of Automotive Engineers (23,803 standards documents).38 In addition, our dataset

includes a large number of smaller SSOs and consortia. Our sample consists in both

standards that are originally produced by one of these 474 organizations and in stan-

38While the American National Standards Institute (ANSI) does not develop standards itself,
standards developed by SSOs accredited by ANSI are often co-published by the developing SSO
and ANSI.
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dards produced by other organizations, but receiving official accreditation from one

of these organizations. Several standards receive accreditation from more than one

organization in our sample. We use information on the equivalence between standard

documents to remove duplicates (always keeping the earliest accreditation/release of

a standard in the sample).

Many important international standards enter the sample when they receive

accreditation by an American SSO. It is e.g. very common that international

standards developed at the International Organization for Standardization (ISO)

or the International Telecommunication Union (ITU) are published as American

Standards by a US SSO. Other international standards can however also be directly

relevant to the US economy. We therefore carry out a robustness analysis in section

6.1 covering also standard documents issued by international organizations (such as

ISO). Once again, we remove duplicates using information on standard equivalence.

If a standard was first developed by an international SSO and eventually accredited

by a US SSO, the standard is included only once, but the standard release date for

this analysis is defined as the date of publication at the international SSO, whereas

it is the date of publication at the US SSO in the analysis using only US standards.

Including standards from international standards bodies allows for instance

covering many of the most relevant 3G and 4G mobile telecommunication standards

applying in the US. Many of these standards were set in a worldwide effort in the Third

Generation Partnership Project (3GPP). The World Administrative Telegraph and

Telephone Conference (WATTC) in 1988 aimed at the international harmonization

of telecommunication standards and led to the inclusion of a large number of already

existing national standards in the ITU standard catalogue. These standards do not

represent the adoption of new technology. We therefore exclude standards that were

released by ITU in the forth quarter of 1988 and that were released in the ICS classes

33.020 (“Telecommunications in general”) and 33.040 (“Telecommunication systems”).

In a second step, we restrict the sample by technological field. We rely upon

the International Classification of Standards (ICS)39. We concentrate on the field

of information and communication technologies (ICT), which we define as standard

documents in the ICS classes 33 (“Telecommunication, Audio and Video Engineering”)

and 35 (“Information Technology, Office Machines”). Standards in these ICS classes

are the most closely related to technological innovation.40 We also perform analyses

39For more details, see the below table G1 and http://www.iso.org/iso/ics6-en.pdf.
40For instance, standards in these classes account for 98% of all declared standard-essential patents

(Baron and Pohlmann, 2018).
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on a wider definition of ICT, including ICS classes 31 (“Electronics”) and 37 (“Image

Technology”).

We count the number of standard documents released per quarter. In several

cases, the Searle Center database only includes information on the year, but not the

month of standard release. For the series containing standards from US SSOs only

(“US”), we have information on both the quarter and the year of release for 71% of

the standards in the period 1975Q1–2011Q4. For the series which contains both

standards from US and international SSOs (“US+Int”), this information is available

for 82% of all standards. For the remainder of the standards, only the year of release

is known to us. In order to adjust our final series, we distribute the remaining

documents uniformly over the quarters of the year.

Accounting for the importance of different standards. In section 5.2, we

distinguish between new and upgraded standards. A standard upgrade is a new

version replacing an older version of the same standard. We thus identify all standard

documents which replace a preceding version of the same standard and those which

constitute genuinely new standards.

Standards differ significantly in their economic and technological importance. In

order to account for this heterogeneity, we implement different weighting methods

in section 6.2. First, we weight the number of documents by the number of times a

standard is referenced by ulterior standard documents. In order to compare standards

released at different points in time, we only count the references received within

the first four years after the standard release (and accordingly we are able to use

standard documents released up to 2011 for this analysis). We choose a window of

four years, because the yearly rate of incoming references is highest in the first four

years after the release. About one half of all standard references are made within the

first four years after release. Second, we weight standard documents by the number

of pages. For each standard document, we observe the number of pages from the

Searle Center database. In the case where such information is not available for a

standard, we use the average number of pages by quarter and ICS class computed

from all those standards where such information is available.

Publicly available version. We provide the baseline series for the US (along with

the counts for new versions only as well as the reference-weighted and page-weighted

counts) on the authors’ websites in order to encourage researchers to use these

series. For transparency, we also provide the code used to transform the data. Users

wanting to modify any of the parameters of the time series (such as technology class,
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international or national scope, weighting) to generate alternative time series using

the same raw data need access to the Searle Center Database41. They can follow the

database access instructions and download the respective folders which contain the

data to be used.

41http://www.law.northwestern.edu/research-faculty/clbe/innovationeconomics/data/
technologystandards/index.html
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Table G1: International classification of standards (ICS)

ICS class Description

1 Generalities. Terminology. Standardization. Documentation.
3 Services. Company organization, management and quality. Administration.

Transport. Sociology.
7 Mathematics. Natural sciences.
11 Health care technology.
13 Environment. Health protection. Safety.
17 Metrology and measurement. Physical phenomena.
19 Testing.
21 Mechanical systems and components for general use.
23 Fluid systems and components for general use.
25 Manufacturing engineering.
27 Energy and heat transfer engineering.
29 Electrical engineering.
31 Electronics.
33 Telecommunications. Audio and video engineering.
35 Information technology. Office machines.
37 Image technology.
39 Precision mechanics. Jewelry.
43 Road vehicles engineering.
45 Railway engineering.
47 Shipbuilding and marine structures.
49 Aircraft and space vehicle engineering.
53 Materials handling equipment.
55 Packaging and distribution of goods.
59 Textile and leather technology.
61 Clothing industry.
65 Agriculture.
67 Food technology.
71 Chemical technology.
73 Mining and minerals.
75 Petroleum and related technologies.
77 Metallurgy.
79 Wood technology.
81 Glass and ceramics industries.
83 Rubber and plastic industries.
85 Paper technology.
87 Paint and colour industries.
91 Construction materials and building.
93 Civil engineering.
95 Military engineering.
97 Domestic and commercial equipment. Entertainment. Sports.
99 (No title)

Source: International Organization for Standards (2005)
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